32-1167 REV 0119

Series 7 professional digital force gauges are designed with a number of sophisticated features for the most demanding tension and compression measurement applications, up to 500 lbF (2500 N). The gauges feature $\pm 0.1\%$ accuracy and a blazingly fast sampling rate of 14,000 Hz, producing reliable results for extremely quick-action tests.

Series 7 gauges include all the functions of Series 5 gauges, with several additional features, including high speed continuous data capture and storage, with memory for up to 5,000 readings at an acquisition rate of up to 14,000 Hz. The gauges also feature programmable footswitch

fix here	M MESUR Lite by Mar	k-10		- •		
Internet Internet Internet Internet 5.66 Internet Internet Internet Internet Internet Internet Internet Inter Interne Interne <th>File Help</th> <th></th> <th></th> <th></th>	File Help					
5.66 table to the table to th			•			
S.60 3 1 1.4 0 1 1.4 0 2 2.6 0 3 2.6 0 4 1.5 0 5 0.6 0.5 1 1.6 0.6 1 1.6 0.6 1 1.6 0.5 1 1.6 0.5 1 1.6 0.5 1 1.5 0.6 1 1.5 0.6 1 1.5 0.6 1 1.5 0.6 1 1.5 0.6 1 1.5 0.6 1 1.5 0.6 1 1.5 0.6 1 1.5 0.6 1 1.5 0.6 1 1.5 0.6 1 1.5 0.6 1 1.5 0.6 1 1.5 0.6		Load				
1 1 14 0 + 2 12 4 50 3 2 50 3 2 12 50			5.66			
2 2.02 0.05 Accessing Date ⊕ 1 2.04 5.05 State 1 2.04 5.05 State 1 5.04 2.05 State 2 4.04 5.05 State 2 4.04 5.05 State 3 4.04 5.05 State 3 4.04 5.05 State 3 4.04 5.06 State 10 3.05 6.06 State 10 3.05 6.07 State 10 3.05 6.07 State		Reading Los	d Time [sec.]			
1 29 30 4 30 30 5 30 30 4 30 30 5 30 30 4 30 30 5 30 30 5 40 30 1 40 50 1 40 50 1 40 50 1 30 50 1 30 50 1 30 50 1 30 50 1 30 50 1 30 50 1 30 50 1 30 50 1 30 50 1 30 50 1 30 50						
4 JJ UD 500 4 JD 500 500 500 10 JD 500 500 500 11 JD 500 500 500 12 JD 500 500 500 13 JD 500 500 500 14 JD 500 500 500 15 JD 500 500 500 13 JD 500 500 500 13 JD 500 500 500 14 JD 500 500 500				Acquiring Data 🕘		
1 444 200 504 200 1 436 2.00 504 504 1 4.04 500 504 500 0 4.04 500 500 500 10 504 500 500 500 10 304 500 500 500 10 304 500 500 500 10 304 500 500 500 10 304 500 500 500 10 304 500 500 500 10 304 500 500 500 10 304 500 500 500						
1 100 100 100 1 100 100 100 1 0.00 100 100 1 0.00 100 100 1 0.00 100 100 1 0.00 100 100 1 0.00 100 100 1 0.00 100 100 1 0.00 100 100 1 0.00 100 100 1 0.00 100 100						
1 400 000 1 1 400 500 1 0 400 500 1 100 0 400 500 1 100 0 300 500 1 100 10 300 500 1 100 10 300 500 1 1 10 300 500 1 1 10 300 500 1 1 10 300 500 1 1 10 300 500 1 1				START		
1 4 44 52 3 43 50 3 43 50 3 44 50 3 45 50 4 45 50 1 3 53 555 1 3 3 405 1 3 4 405 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						
9 440 440 10 446 645 1059 11 532 636 1059 12 532 636 1059 13 532 636 1059 14 53 636 1059 15 535 636 1059 15 540 640 1059 16 37 630 1059						
39 6.66 800 13 52 656 800 12 52 656 800 13 53 660 800 14 53 600 800 15 540 600 800 16 540 600 800 16 540 600 800						
11 5.52 6.56 13 5.52 6.56 14 5.13 6.62 13 3.6 6.62 14 3.6 6.72 15 3.7 6.72 16 3.7 6.72 17 5.56 6.40						
12 552 655 13 536 6660 14 59 6660 15 596 670 16 537 6752 17 558 6807				STOP		
13 3.78 0.402 14 3.9 0.405 15 3.40 0.701 16 3.7 0.752 17 5.56 0.407						
14 5.0 0.001 15 5.86 0.700 16 5.7 0.752 17 5.58 0.807						
15 5.86 0.700 16 3.7 0.752 17 5.58 0.807						
16 5.7 0.752 17 5.58 0.807						
17 5.58 0.807						
		40 3				
Export to Excel Gauge Memory		Eq to I	ort iscel			

MESUR[™] Lite data acquisition software is included with Series 7 gauges

sequencing, break detection, and 1st / 2nd peak detection. Series 7 includes a coefficient of friction unit of measurement and userdefined unit of measurement. For productivity enhancement, the gauges also feature automatic data output, data storage, and zero functions upon

Page 1 of 4

Shown with an ESM303 test stand and G1061 wedge grips

the completion of break detection, averaging, external trigger, and 1st / 2nd peak detection.

Series 7 force gauges are directly compatible with Mark-10 motorized test stands, to permit functions such as break testing, tensile testing, compression testing, dynamic load holding, PC control capability, and many other applications.

Features

- High-speed 14,000 Hz sampling rate
- Continuous data capture of up to 5,000 data points, at up to 14,000 Hz, downloadable to a PC
- Individual data point memory for up to 5,000 readings, downloadable to a PC
- USB, RS-232, Mitutoyo, and analog outputs
- Sample break detection with auto functions, including stopping movement of a motorized test stand
- Automatic output / data storage / zeroing upon various event completions

- 1st / 2nd peak detection
- 5 units of measurement, plus Coefficient of Friction and user-defined unit with configurable name
- Programmable footswitch command string
- Programmable set points, with indicators and outputs
- Averaging mode calculates average readings over time
- External trigger mode for switch contact testing or remotely stopping display update
- Password protection, configurable for individual keys and calibration

Mark-10 Corporation ■ www.mark-10.com ■ info@mark-10.com Toll-free: 888-MARK-TEN ■ Tel: 631-842-9200 ■ Fax: 631-842-9201

Specifications subject to change without prior notice

32-1167 REV 0119

Page 2 of 4

Focus on Engineering: Specialized Gauge Functions

Series 7 gauges feature several functions typically found in more complex instruments, such as materials testers, data acquisition systems, and PLCs. The following unique features are highlighted:

High Speed Data Capture & Storage

> Series 7 can capture and store up to 5,000 continuous data points at a rate of up to 14,000 readings per second. This unique function is ideal for capturing switch activation forces, sharp breaks, and other short-duration applications. Configurable start and stop triggers are provided. The data acquisition rate is variable and can be slowed to also capture longer events, such as structure relaxation, material expansion, and others.

Data from the storage buffer can be exported to data collection software such as MESUR[™] gauge for further analysis and graphing. Using a Series 7 gauge could replace cumbersome and expensive data acquisition hardware and software.

Series 7 FOOTSWITCH * Enabled Step : 9PT Delay 1: 3 sec. Step 2: 9M Delay 2: 2 sec. Step 3: CLR

Footswitch Command String

Integrate your footswitch / automation system with a Series 7 gauge to improve testing ergonomics and efficiency; no need for multiple key presses. Up to three steps may be programmed for a single footswitch activation.

Select from several commands, including request peak reading, zero the display, save to memory, and others. Time delays can be inserted between each step.

Automatic Data Output / Save / Zero / I/O Pin Toggle

> Upon completion of several event types, Series 7 can perform the following automatic functions: (1) Save the peak reading to memory, (2) Transmit the peak reading via USB, RS-232, or Mitutoyo output, (3) Zero the display, and (4) Toggle an I/O pin, for example to stop movement of motorized test stand.

Applicable events include:

(1) Sample break detection (also applicable to samples which slip, click, or otherwise reach a peak, then fall), (2) Completion of an averaging sequence, (3) External trigger (ex. switch activation), and (4) 1st / 2nd peak capture (ex. tensile testing).

MARK - 1 D

User-defined Unit of Measurement

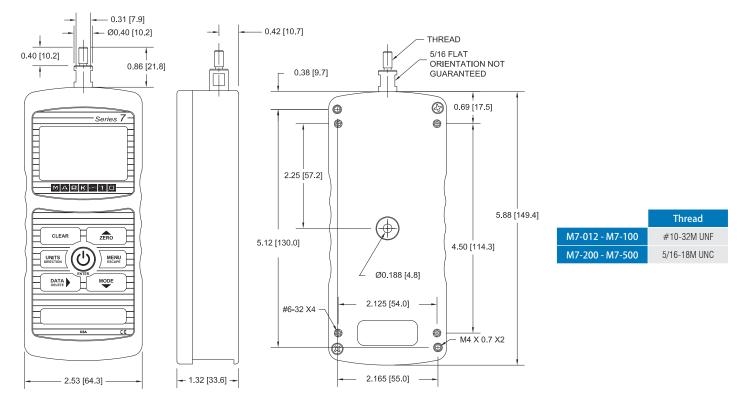
> Series 7 gauges display 6 standard units of measurement. One additional user-defined unit is provided for unique applications. A base unit is specified, along with a multiplier, and 5-character name.

Typical applications:

(1) To measure the torque produced by pressing on a lever in a mechanical assembly, configure the multiplier based on the length of the lever, thereby converting a unit such as N into Ncm.

(2) To measure the pressure produced by a circular compression plate on a foam sample, configure the multiplier based on the area of the plate, thereby converting a unit such as IbF into psi.

Mark-10 Corporation ■ www.mark-10.com ■ info@mark-10.com Toll-free: 888-MARK-TEN ■ Tel: 631-842-9200 ■ Fax: 631-842-9201


Specifications subject to change without prior notice

32-1167 REV 0119

Specifications

Accuracy:	\pm 0.1% of full scale					
Sampling Rate:	14,000 Hz, pulse response of 1/7,000 sec. minimum					
Power:	AC or rechargeable battery. Multi-step low battery indicator is displayed, gauge shuts off automatically when power is too low.					
Battery life:	Backlight on / off: up to 7 / 24 hours of continuous use					
Outputs:	USB / RS-232: Configurable up to 115,200 baud. Auomatic output available up to 250 Hz. Includes Gauge Control Language 2 for full computer control. Mitutoyo (Digimatic): Serial BCD suitable for all Mitutoyo SPC-compatible devices. Analog: ±1 VDC, ±0.25% of full scale at capacity, General purpose: Three open drain outputs, one input. Set points: Three open drain lines.					
Safe overload:	200% of full scale (display shows "OVER" at 110% and above)					
Weight:	M7-012 - M7-100: 1.0 lb [0.45 kg] M7-200 - M7-500: 1.2 lb [0.54 kg]					
Load cell deflection:	All models 0.010 [0.25], except 0.005 [0.13] for M7-012					
Included items:	Carrying case with chisel, cone, V-groove, hook, flat, extension rod, universal voltage AC adapter, battery, quick-start guide, USB cable, resource CD (USB driver, MESUR™ Lite software, MESUR™gauge DEMO software, and user's guide), and NIST-traceable certificate of calibration with data.					
Environmental requirements:	40 - 100°F, max. 96% humidity, non-condensating					
Warranty:	3 years (see individual statement for further details)					

Dimensions in [mm]

Mark-10 Corporation ■ www.mark-10.com ■ info@mark-10.com Toll-free: 888-MARK-TEN ■ Tel: 631-842-9200 ■ Fax: 631-842-9201

Specifications subject to change without prior notice

Page 3 of 4

32-1167 REV 0119

In The Box

Series 7 force gauges are shipped as shown at left, and include the following accessories:

Page 4 of 4

- (1) Extension rod *
- (1) Hook *
- (1) Cone * (1) Chisel *
- (1) V-Groove *
- (1) Flat *
- (1) Coupling *
- (1) Carrying case
- (1) USB cable
- (1) AC adapter
- (1) Resource CD
- * The specific accessory depends on the force gauge model. Refer to the website for details.

Capacity x Resolution

Model	lbF	ozF	kgF	gF	N	kN	mN
M7-012	0.12 x 0.00002	2 x 0.0005	-	50 x 0.01	0.5 x 0.0001	-	500 x 0.1
M7-025	0.25 x 0.00005	4 x 0.001	-	100 x 0.02	1 x 0.0002	-	1000 x 0.2
M7-05	0.5 x 0.0001	8 x 0.002	-	250 x 0.05	2.5 x 0.0005	-	2500 x 0.5
M7-2	2 x 0.0005	32 x 0.01	1 x 0.0002	1000 x 0.2	10 x 0.002	-	-
M7-5	5 x 0.001	80 x 0.02	2.5 x 0.0005	2500 x 0.5	25 x 0.005	-	-
M7-10	10 x 0.002	160 x 0.05	5 x 0.001	5000 x 1	50 x 0.01	-	-
M7-20	20 x 0.005	320 x 0.1	10 x 0.002	10000 x 2	100 x 0.02	-	-
M7-50	50 x 0.01	800 x 0.2	25 x 0.005	25000 x 5	250 x 0.05	-	-
M7-100	100 x 0.02	1600 x 0.5	50 x 0.01	50000 x 10	500 x 0.1	-	-
M7-200	200 x 0.05	3200 x 1	100 x 0.02	-	1000 x 0.2	1 x 0.0002	-
M7-500	500 x 0.1	8000 x 2	250 x 0.05	-	2500 x 0.5	2.5 x 0.0005	-

Coefficient of friction and user-defined units are excluded from the above chart.

All models include 110V AC adapters. Add suffix 'E' for euro plug (220V), 'U' for UK plug (220V) or 'A' for Australian plug (220V). Ex: M7-05E, M7-100U, M7-500A

Mark-10 Corporation ■ www.mark-10.com ■ info@mark-10.com Toll-free: 888-MARK-TEN ■ Tel: 631-842-9200 ■ Fax: 631-842-9201

